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(1) (Constrained optimization - Kepler's wedding) A cylindrical wine barrel has a
hole in the center of one side. When a rod is put into this hole and reaches the
furthest into the barrel that it can go, it reaches a distance of L. Given this
constraint, �nd the radius r and height h which maximize the volume of the
barrel.

Solution: Let r denote the radius of the barrel and let h denote the height.

Constraint : (2r)2 + (h/2)2 = L2

Objective function : πr2h

We isolate r in the constraint equation:

4r2 + h2/4 = L2 =⇒ r = ±
√
L2

4
− h2

16

and plug this expression for r back into the objective function to get it as a
function of just the variable h.

f(h) = πr2h = π

(
L2

4
− h2

16

)
h

f(h) =
πL2

4
h− π

16
h3

In the situation of the problem, h > 0 (because height must be positive) and
h < 2L (because L is at least half the height) - therefore, we are looking for the
global maximum of f(h) in the interval (0, 2L). We �rst �nd the critical points:

f ′(h) =
πL2

4
− 3π

16
h2 = 0

=⇒ h2 =
4

3
L2 =⇒ h =

2√
3
L

1
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This is a local maximum because f ′′(h) = −3π
8
h which is negative at h = 2√

3
L.

And it is a global maximum, because it's the only critical point. We can even
check the endpoints of the interval:

f(0) = 0 f

(
2√
3
L

)
=

π

3
√
3
L3 f(2L) = 0

(2) (Constrained optimization) A box of height 1m and depth 3m is placed against
a wall. A straight ladder must go over the box and lean against the wall. What
is the shortest possible length of the ladder?

Solution 1: Constrained optimization.

Let x be the distance from the foot of the ladder to the box, and let y be the
distance from the top of the box to the top of the ladder. Then our objective
function, which we want to minimize, is1

L2 = (x+ 1)2 + (y + 3)2

x and y can't vary freely, though - they are related. The constraint is that the
ladder is a straight line - i.e., the right triangle formed by x and the height of the
box, is similar to the right triangle formed by the width of the box and y. These
similar triangles give us the constraint equation

y =
3

x

1Minimizing L is the same as minimizing L2, so we'll just do the second because it's easier.
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Plugging this into the objective function gives us

f(x) = L2 = (x+ 1)2 +

(
3

x
+ 3

)2

= (x+ 1)2 +

(
3

x
(x+ 1)

)2

= (x+ 1)2
(
1 +

9

x2

)
Take the derivative:

f ′(x) = 2(x+ 1)

(
1 +

9

x2

)
+ (x+ 1)2

(
−18

x3

)
= 2(x+ 1)

(
1 +

9

x2
− (x+ 1)

9

x3

)
= 2(x+ 1)

(
1− 9

x3

)
Remember that x > 0, because the foot of the ladder has to be to the right of the

box. Therefore, the only critical point is x =
3
√
9 . To check that this is indeed

a minimum, we have to take the second derivative

f ′′(x) = 2

(
1− 9

x3

)
+ 2(x+ 1)

27

x4
= 2 +

36

x3
+

54

x4

which is positive at x = 3
√
9. Therefore, f(x) is concave up at x = 3

√
9, meaning

that x = 3
√
9 is indeed a local minimum.

To �nd the length of the ladder in this case, we can solve for y: y = 3
3√9

= 3
√
3.

Then we can use the Pythagorean theorem

L2 = (
3
√
9 + 1)2 + (

3
√
3 + 3)2

=
3
√
81 + 2

3
√
9 + 1 +

3
√
9 + 6

3
√
3 + 9

= 3
3
√
9 + 9

3
√
3 + 10

and so L =
√

3 3
√
9 + 9 3

√
3 + 10.

Solution 2: Unconstrained optimization.
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We can put the picture in a coordinate system. The upper-right corner of the
box is at the point (1, 3), and the ladder is a line through this point with some
(negative) slope m. Thus, the equation of the ladder is y − 3 = m(x − 1). We
can calculate the intersections of this line with the x-axis

−3 = m(x− 1) =⇒ x = 1− 3

m

and y-axis

y − 3 = m(−1) =⇒ y = 3−m

Our objective function is thus

f(m) = L2 =

(
1− 3

m

)2

+ (3−m)2

which factors (
m− 3

m

)2

+ (m− 3)2 = (m− 3)2
(
1 +

1

m2

)
To minimize, we calculate the derivative

f ′(m) = 2(m− 3)

(
1 +

1

m2

)
+ (m− 3)2

(
−2
m3

)

= 2(m− 3)

(
1 +

1

m2
− 1

m2
+

3

m3

)
= 2(m− 3)

(
1 +

3

m3

)
Remember that m must be negative, because the foot of the ladder must be to

the right of the box. Therefore, the only critical point is m = − 3
√
3 . To check

this is a local minimum of f(m), we can calculate the second derivative f ′′(m) -
this is similar to in Solution 1. We can also �nd the length of the ladder for this
value of m, and will get the same answer as in Solution 1.

(3) (Constrained optimization) Baculovirus is a cylindrically-shaped cell which must
hold a certain amount of genetic material, and therefore has �xed volume 54000π
nm3. Find the radius and height which give the cell the minimal possible surface
area.

Solution: Our constraint is πr2h = 54000π, or equivalently, r2h = 54000. We
must minimize the surface area, which is 2πr2 + 2πrh. We can isolate h in the
constraint equation

h =
54000

r2

and plug it into the objective function to get

f(r) = 2πr2 + 2πr
54000

r2
= 2πr2 + 2π

54000

r
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We are looking for a global minimum of this function on the interval (0,∞).
Finding the critical points:

f ′(r) = 2π

(
2r − 54000

r2

)
= 0

=⇒ r − 27000

r2
= 0 =⇒ r = 30

This is a local minimum because f ′′(r) = 2π(2 + 108000
r3

) is positive at r = 30.
It's the only critical point, and therefore is a global minimum. (Checking the
endpoints of the interval: as r → 0, f(r)→∞ and as r →∞, f(r)→∞.)

(4) (Unconstrained optimization) Let xmeasure the population of aphids in a garden.
The reproduction rate of aphids is G(x) = 3x and the rate of predation by
ladybugs is P (x) = 30x

5+x
. Is there a value of x > 0 for which the net growth rate

is minimized? At which it is maximized? For each, either �nd the value of x, or
explain why none exists.

Solution: The net growth rate is

N(x) = G(x)− P (x) = 3x− 30x

5 + x

where x varies over the interval [0,∞). First, let's calculate the critical points of
N(x).

N ′(x) = 3− 150

(5 + x)2
= 0 ⇐⇒ 3(5 + x)2 = 150

⇐⇒ 5 + x = ±5
√
2 ⇐⇒ x = −5± 5

√
2

We only need to consider the positive root, as the negative root lies outside of
the range of the model. To classify this critical point, we calculate the second
derivative

N ′′(x) =
300

(5 + x)3
=⇒ N(−5 + 5

√
2) =

300

53
=

12

5

which is positive - therefore, x = −5 + 5
√
2 is a local minimum. The derivative

N ′(x) = 3 − 150
(5+x)2

is negative for 0 < x < −5 + 5
√
2, and positive for all

x > −5 + 5
√
2. Therefore, −5 + 5

√
2 is a global minimum. The function has

no global maximum, because as x → ∞, N(x) → ∞ (because 30x
5+x

approaches
towards the maximal rate of 30, while 3x grows without bound).
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(5) (Sketching) Let f(x) = x2

2
− 4

x
. Sketch a graph of y = f(x). (Helpful steps: �nd

the zeroes, �nd the critical points, classify them as local maxima/minima/neither,
�nd the in�ection points.)

Solution:
• For x near 0, f(x) ∼ − 4

x
. In fact, f(x) has a vertical asymptote at x = 0.

• As x→ ±∞, f(x) ∼ x2

2
.

This gives us the �rst graph (left) below, as a starting point. The question is now,
what is the intermediate behavior which occurs in between these two regimes. For
example, how many times does the graph of y = f(x) cross the x-axis, how many
local minima/maxima are there, etc. We explicitly calculate the answer to these
questions.
(a) Zeroes of f(x): f(x) = 0 ⇐⇒ x2

2
= 4

x
⇐⇒ x3 = 8 ⇐⇒ x = 2. Therefore,

there is only one zero, at x = 2.
(b) Critical points of f(x): f ′(x) = x+ 4

x2
and so f ′(x) = 0 ⇐⇒ x3 = −4 ⇐⇒

x = − 3
√
4. Therefore, there is only one critical point, at x = 3

√
4. One can

reason out from the graph that it is a local minimum, but let's check the
second derivative, just to be sure: f ′′(x) = 1− 8

x3
, and so f ′′(− 3

√
4) = 1+8

4
= 3

is positive, indeed.
(c) In�ection points: f ′′(x) = 1 − 8

x3
which is zero at just x = 2. This is an

in�ection point, because f ′′′(x) = 24
x4

is nonzero at that point.
The calculations above are recorded in the second graph (right) below.
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